Generalizations and Applications of the Lagrange Implicit Function Theorem
نویسندگان
چکیده
The Implicit function theorem due to Lagrange is generalized to enable high order implicit rate calculations of general implicit functions about a nominal solution of interest. The sensitivities thus calculated are subsequently used in determining neighboring solutions about a nominal point, or in the case of a dynamical system, a trajectory. The generalization to dynamical systems, as a special case, enables the calculation of high order time varying sensitivities and the sensitivity of the solutions of two point boundary value problems subject to system parameter and boundary condition variations. The generalizations thus realized are applied to various problems arising in trajectory optimization. It was found that useful information relating the neighboring extremal paths can be deduced from the implicit rates characterizing the behavior in significant finite neighborhoods centered along the nominal motion. The accuracy of the solutions obtained is subsequently enhanced using a Global Local Orthogonal Polynomial (GLO-MAP) weight functions developed by the first author to blend many local approximations in a continuous fashion. Example problems illustrate the wide applicability of the presented generalizations of Lagrange’s classical results to static and dynamic optimization problems.
منابع مشابه
A new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملA common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces
In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...
متن کاملSubordination and Superordination Properties for Convolution Operator
In present paper a certain convolution operator of analytic functions is defined. Moreover, subordination and superordination- preserving properties for a class of analytic operators defined on the space of normalized analytic functions in the open unit disk is obtained. We also apply this to obtain sandwich results and generalizations of some known results.
متن کامل$S$-metric and fixed point theorem
In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008